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1 Introduction

In the last decades, a vast variety of programming languages have been de-
signed. They support different paradigms of programming, and focus on
divergent application areas. A significant distinction is between classical pro-
gramming languages, which typically are compiled, execute fast and have a
static type system, and so-called scripting languages, which, in contrast, are
mostly interpreted, dynamically typed, easy to use, but have moderate execu-
tion performance.
This document defines Monty, a programming language that combines the
advantages of programming and scripting languages. Monty shall provide a
maximal comfort in programming, with focus on performance. The language
relies on class-based object-orientation. Everything in Monty is an object. In
fact every object has a defined value at any time. Values like nil, null or void
are not needed. To achieve high performance, the language is based on a
static type system. Nevertheless, flexible typing through abstract classes and
the possibility to extend objects at runtime improve programming comfort.
The design of the syntax has been driven by the ideals of compactness and
readability.
This document defines the Monty programming language, and includes a ra-
tionale for the design decisions taken. It is divided into nine chapters. Start-
ing with the introduction of lexical elements (chapter 2) and continuing with
a description of all available objects (chapter 3), the first chapters deal with
the basic data model. The following chapters deal with expressions (chap-
ter 4), statements (chapter 5) and declarations (chapter 6). Chapter 7 focuses
on classes and the structure of objects, including the concepts polymorphism
and inheritance, leading towards a plain introduction of modules and pack-
ages (chapter 8). Closing with the rationale in chapter 9, a summary and
justification displays the most remarkable decisions in the design process of
the Monty programming language.

How Monty was designed

The language Monty has been developed in the student project “Monty’s
Coconut” (http://www.informatik.uni-bremen.de/monty/) of the Masters
program in Computer Science at Universität Bremen. The authors are stu-
dents of that project.
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Chapter 1. Introduction The Monty Language Specification

About the name Monty

When David A. Watt (University of Glasgow) proposed a language with flex-
ible typing that should combine the syntactic compactness of Python with the
object-oriented type system of Java, he called it Monty, after the British com-
edy group “Monty Python” [11]. When the idea for the student project was
born, David’s language and paper have been a major source of inspiration.
On a workshop in December 2013, where we presented the project’s ideas for
the new language to him, David has granted us permission to use the name of
his language proposal (which has never been implemented) for our language.
(“Coconut” in the name of the project refers to the German title of the movie
“Monty Python And The Holy Grail”, “Die Ritter der Kokosnuss”, “Knights
of the Coconut” in English).

Syntax Notation

The form of a Monty program is described by means of a context-free syntax
together with context-dependent requirements expressed by narrative rules.
The meaning of Monty programs is described by means of narrative rules
defining both the effects of each construct and the composition rules for con-
structs.
The context-free syntax of the language is described using a simple variant of
Backus-Naur Form. In particular:

• Lower case words in a sans-serif font denote syntactic categories, which
define syntactic portions of a program, for example: returnStatement;

• Boldface words denote reserved words, which appear literally (in nor-
mal face) in a program, for example: return;

• Strings enclosed in single quotes denote delimiters and operators, for
example '<=' and ' ) ', which appear literally (then without the enclosing
apostrophes) in a program;

• Rules of the form category ::= expression define the form of a syntactic
category. So the rule

handler ::= handle exception
block

specifies that the syntactic category handler consists of the a reserved
word handle, followed by the syntactic category exception, the delimiter
' : ', and the syntactic category block.

• A vertical bar “|” (pipe symbol) separates alternative forms that a syn-
tactic category can take:

5



Chapter 1. Introduction The Monty Language Specification

returnStatement ::= return | return expression

• Square brackets enclose an optional item. Thus the two following rules
are equivalent.

returnStatement ::= return [expression]
returnStatement ::= return | return expression

• Curly brackets enclose a repeated item. The item may appear zero or
more times; the repetitions occur from left to right as with an equivalent
left-recursive rule. Thus the two following rules are equivalent.

handleStatement ::= try
block
{ handler }

handleStatement ::= try
block

| handleStatement
handler

The syntax rules depend on line breaks and require a certain indentation of
blocks (see section 2.2 for a precise description of indentation rules). For
this reason, three special tokens are inserted during the lexical analysis. The
newline token ê stands for one or more line breaks, while the indent ñ and
dedent ó tokens denote an increased or decreased indentation level.

block ::= ':' ê
ñ

( 'pass' ê | blockContent { blockContent } )
ó

Samples of Monty programs are set in typewriter front (with keywords high-
lighted). An example of an exception handler could look as follows (Here the
ê, ñ and ó Tokens are omitted. Instead, the line breaks and line indentation
appear literally as they are required):

handle InputError :
return 0.0

6



2 Lexical Elements

The text of a program consists of lexical elements, each composed of charac-
ters; the rules of composition are given in this chapter.

2.1 Comments

A comment designates text that shall document the program, but has no sig-
nificance for its semantics. It begins with two forward slashes and ends with a
new-line character (as defined in 2.2). Comments may contain Unicode char-
acters. The syntax is defined as follows:

Comment ::= '//' {EveryCharButNewline} ê

Where EveryCharButNewline stands for any character which is different from
Newline.
Comments may occur in code as follows:

// Line comment.
print("Hello World") // Comments may appear after statements.

Comments can be placed anywhere in the program. The indentation rules
(see section 5.2) do not apply for comments.

2.2 Layout Characters

Layout characters separate lexical elements. The following ASCII characters
are used as layout characters:

1. Horizontal tabulators (\t, decimal code 9)

2. Line feeds (\n, decimal code 10)

3. Carriage returns (\r, decimal code 13)

4. Spaces (decimal code 32)

LayoutCharacter ::= Space | ê
LayoutSequence ::= LayoutCharacter { LayoutCharacter }

Space ::= ' \t ' | ' '
Newline ::= [ ' \r ' ] ' \n' { [ ' \r ' ] ' \n' }

7



Chapter 2. Lexical Elements The Monty Language Specification

The function of layout characters in code is twofold:

1. Lexical: Separate lexemes in order to make these distinguishable

2. Syntactical: Indentation as a means to designate blocks

Indentation is defined as follows:

i) A line l is a sequence of tokens, which has exactly one ê token. The ê

token is the last token in that sequence.

ii) A line’s indentation is the longest prefix of l, which only contains Space
characters.

iii) The length of the indentation is called indentation level.

The indentation is processed during the lexical analysis:

• A ñ token is inserted if the indentation level of a non-empty line is
greater than the indentation level of the previous line.

• A number of ó tokens is inserted, if the indentation level of a non-
empty line is less than the indentation level of the previous line and the
following condition holds:

The indentation level of the current line is equal to an indentation
level of one of the previous lines.

The number of ó tokens inserted is equal to the number of indentation
levels which exist between the previous and the current line.

• An empty line is a line which only contains layout characters or com-
ments

The line indentation level determines how blocks are grouped, see section 5.1
for details.

2.3 Identifiers

Identifiers consist of letters, digits and underscores. Three kinds of identifiers
are distinguished:

Identifier ::= { '_' } LowercaseLetter { IdentifierSymbol }

ConstantIdentifier ::= { '_' } UppercaseLetter
{ UppercaseLetter | Digit | '_' }

ClassIdentifier ::= UppercaseLetter { IdentifierSymbol }
LowercaseLetter { IdentifierSymbol }

IdentifierCharacter ::= LowercaseLetter | UppercaseLetter | Digit | '_'

8
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Digits and letters are defined as follows:

Digit ::= '0' | ... | '9'
LowercaseLetter ::= 'a' | ... | 'z'
UppercaseLetter ::= 'A' | ... | 'Z'

The first character of any identifier must be a letter or underscore character.
The case of letters is used to keep variable, procedure or module identifiers
apart from constant and class identifiers. All types of identifiers only may
only contain ASCII characters.

DEADBEEF // constant
_PI // constant
Network // class
TcpConnection // class
__connect // variable, procedure or module
onEvent // variable, procedure or module
connected // variable, procedure or module

2.4 Keywords

The following reserved words cannot be used as identifiers:

abstract and as break class else false handle if import in inherits
initialize not or parent pass raise self skip true try while

2.5 Delimiters

Delimiters are lexemes that structure the program:

+ - ~ # : , . ( ) [ ] < > := += -= *= /= %= ^=

The delimiters +, -, < and > are also used as operators.

2.6 Operators

Operators define a reserved set of special characters and keywords that can
be used as a syntactic sugar for special method calls. There is a distinction
between unary and binary operators:

unaryOperator ::= not | '´'
binaryOperator ::= '+' | '´' | '*' | ' / ' | '%' | '^' | '=' |

'!=' | '<' | '>' | '<=' | '>=' | '´>' | in
operator ::= unaryOperator | binaryOperator
binaryOperatorLike ::= as | is | and | or

9
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Unary operators use the prefix notation, i.e. they are written in front of the
function argument, without parenthesis. Binary operators use the infix nota-
tion, which means that they are written between the arguments.
The minus (-) is a unary operator (returning the additive inverse of a number)
as well as a binary operator (for subtracting numbers).
Additionally, there are four binary operations, which are not translated into
method calls. These are as, is, and and or. These are also described in
section 4.4.

2.7 Literals

A literal denotes constant values of a predefined object type, i.e. truth values,
integral and floating point numbers, single characters and character strings.

literal ::= BoolLiteral
| IntLiteral
| FloatLiteral
| CharacterLiteral
| StringLiteral

Each literal denotes an object, that is an instance of its corresponding data
type. For example, true is of type Bool, whereas 123 is an object of type Int.

2.7.1 Boolean
A boolean literal is either true or false.

BoolLiteral ::= true | false

2.7.2 Integer
An integer literal consists of digits or letters. Optionally, a positive exponent
and the base may be specified.

IntExponent ::= ( 'e' | 'E' ) [ '+' ] Digit { Digit }

Base ::= [ '0' | '1' | '2' ] Digit
| '3' ( '0' | ... | '6')

IntLetter ::= 'A' | ... | 'F'
| 'a' | ... | ' f '

IntLiteral ::= ( Digit { Digit } [ IntExponent ] )
| ( '0' { IntLetter | Digit } '_' Base )

10
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If a base is specified, then the literal must start with the digit 0. The base
specifier follows a leading underscore. An exponent starts with an e or E and
an optional sign character (- or +). Exponents can only be specified for base
10 and cannot be negative for integers.

42
02
0PL1_21
42e3

2.7.3 Float
Float numbers consist of an integer part and a fractional part, separated by a
dot. Optionally an exponent may be specified.

FloatingLiteral ::= Digit { Digit } '. ' Digit { Digit }
[ FloatExponent ]

FloatExponent ::= ( 'e' | 'E' ) [ '´' | '+' ] Digit { Digit }

Note that .4 and 1. are not valid float literals, since at least one leading and
one trailing trailing digit is required.

511.37
0.214
0.000042e+6

2.7.4 Character
A character literal is enclosed in single-quotes. Escaping via a backslash is
required for single quotes (') as well as for some escape sequences, described
in Table 2.1

CharacterLiteral ::= '\'' Character '\''
Character ::= UnicodeCharacter | CharacterEscapeSequence

A UnicodeCharacter is a C0 or C1 control character with the exception of single
quotes ( ') and backslashes. Double quotes may or may not be escaped in Char
literals, due to the compatibility with String literals. CharacterEscapeSequence
defines a sequence of escaped characters. It is one of the following:

11



Chapter 2. Lexical Elements The Monty Language Specification

Escape sequence ASCII name
\\ Backslash (\)
\’ Single quote (’)
\" Double quote (")
\a Acoustic signal (decimal code 7)
\b Backspace (decimal code 8)
\t Horizontal tab (decimal code 9)
\v Vertical tab (decimal code 11)
\n Linefeed (decimal code 10)
\f Formfeed (decimal code 12)
\r Carriage return (decimal code 13)
\uxxxx Unicode character with 16-bit hex value xxxx

Table 2.1: Escape sequences in string and character literals

Examples:

'a' // lowercase character
'Z' // uppercase character
'\n' // ASCII newline character
'\\' // backslash character
'ç' // Unicode character
'\'' // single quote
'\"' // escaped double quote
'"' // unescaped double quote

2.7.5 String
A string is a sequence of zero or more characters.

StringLiteral ::= '"'
{ CharacterEscapeSequence | UnicodeStringCharacter }
'"'

UnicodeStringCharacter is a C0 or C1 control character with the exception of
double quotes ("), backslashes (\) and line breaks. The same escape sequences
as for characters are also valid in strings (see Table 2.1). A string cannot span
more than one line.

"Hello \n World!" // Hello
// World!
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3 Objects

Every entity of Monty is an object. An object has a unique reference, referred
to as an object’s identity. Its type is defined by a corresponding class (which
will be introduced in chapter 7). Every object is an instance of its type. The
class itself defines the object’s internal structure. An object is defined by its
features. Features of an object are its attributes and methods. Attributes are con-
stants and variables defined inside an object.
Variables are addresses of objects bound to an identifier. Similarly, constants
are addresses of immutable objects bound to some constant identifier. While
variables can be updated, constants can only be set once. Methods are func-
tions and procedures defined on an object and will be introduced in the fol-
lowing chapters. An object may also include dynamic features which are not
defined at compile-time but rather at runtime.
Objects respond to specific messages. More precisely they respond to ex-
actly those messages that access an object’s feature (see chapter 7 for details).
Hence, an object o with features f1, . . . fk`l , from which f1, . . . , fk are attributes
and fk`1, . . . , fl are referred to as methods m1, . . . , ml responds to messages of
the following form:

Message form Description
o. fi yields the feature fi of o
o-> fi yields the dynamic feature fi of o
o.mipp1, . . . , pnq calls method mi of o with parameters p1, . . . , pn
o->mipp1, . . . , pnq calls dynamic method mi of o with parameters p1, . . . , pn

Any feature of an object can be requested by the first two kinds of messages.
However, only methods of an object can be called, using the last two kinds of
messages. If the feature requested by a message is not defined on the receiving
object, a compile error will occur. In case of dynamic features, an AccessExcep-
tion will be raised at runtime (see section 5.8 for details on exceptions).
Every object satisfies one and only one of the following conditions:

1. All attributes are constant and can not be changed by any messages.
(immutability)

2. At least one attribute is a variable and can be changed by specific mes-
sages. (mutability)

Objects of simple types Int, Float, Char, Identity, Bool and String are
immutable. All other types and also all types defined by a user can not be
assured to be immutable. Objects of immutable types do not have dynamic

13
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features. Furthermore, every message to such a receiver object preserves the
receiver and returns a new object. The following sections will introduce the
predefined objects in Monty.

3.1 Simple Objects

Simple objects only have one attribute that describes its internal value. It is
limited to a specific domain. Therefore, simple objects are also referred to as
scalar values. The only attribute of a simple object is constant, which makes all
predefined simple objects immutable.

3.1.1 Boolean
Boolean objects are of type Bool. The value of boolean objects corresponds to
the binary domain:

tfalse, trueu

The Bool type not only inherits from Equal for enabling boolean objects to be
checked for equality, but also from Ordered, which defines an order on boolean
values ( f alse ă true) and also makes ă“ available as an implication operator1.
Boolean objects may be used as arguments for the special and and or expres-
sions, which provide logical operations on boolean values. Those expressions
are not implemented as operators, since they provide a shortcut-evaluation
strategy, which is not possible for method arguments:

Expression Description
x and y returns true if x and y evaluate to true. If x

is false, y is not evaluated.
x or y returns true if at least one of x or y evaluates

to true. If x is true, y is not evaluated.

3.1.2 Integer
Integer objects are of type Int. The domain of their value is limited to the
integral numbers Z.
Integers can be of arbitrary size. Since Int is a subclass of the abstract classes
Ordered, Equal and Arithmetic, its instances respond to all messages defined in
those classes. Additionally the modulo operation provides an integer-specific
message. Also the arithmetic operators are overloaded to also be compatible
with Float objects.

1Although the direction of the implication arrow does not match its mathematical counterpart

14
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Operation Description Usage
o._mod_(v) divides the value of an object o by a value v

and returns the rest
o % v

3.1.3 Float
Float objects are implemented as double precision floating point numbers ac-
cording to the IEEE 754 standard[1]. Since Float is a subclass of the abstract
classes Ordered, Equal and Arithmetic, its instances respond to all messages
defined in those classes.
Additionally the following methods are defined on float objects:

Operation Description Usage
o.round() rounds the value of an object o o.round()
o.ceil() rounds the value of o to the next integer

value
o.ceil()

o.floor() truncates the fractional part of the value of o o.ceil()

3.1.4 Characters
The value of character objects is defined by Unicode characters encoded in
UTF-8, each of which correspond to a specific integer value (defined by the
Unicode standard). To get the numeric value of a character object the follow-
ing message can be used:

Operation Description Usage
o.getCode() returns the numeric code of the character ob-

ject o
o.getCode()

The Char class inherits from the abstract class Ordered, since the unicode stan-
dard assigns an index to each character and thus defines an order on Char.
Since Ordered inherits Equal, character objects may also be checked for equal-
ity.

3.2 Sequences

Sequence objects are collections whose elements are ordered. The domain of
their attributes is generic, restricting the type of their elements to be a subtype
of their type parameter (for details on generics see section 7.4).
The following methods define specific messages for sequence objects:
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Operation Description Usage
s._at_(i) returns the element at index i of sequence s s[i]
s.getFirst() returns the first element of sequence s s.getFirst()
s.getLast() returns the last element of sequence s s.getLast()
s.getSize() returns the length of sequence s s.getSize()
s.isEmpty() returns true, if sequence s is empty s.isEmpty()
s._contains_(e) returns true if e is element of sequence s e in s
s1._add_(s2) concatenates the sequences s1 and s2 s1 + s2

The following sequence objects are available:

• Array

• List

• String

3.2.1 Arrays
Array objects are mutable sequences of fixed size. The number of their ele-
ments, once determined, can not be changed. The following methods define
specific messages, array objects respond to:

Operation Description Usage
a._set_(i,v) sets element at index i of array a to

value v
a[i] := v

3.2.2 Lists
List objects are sequences of flexible size. They are mutable and respond to the
messages defined on sequence objects. The following methods define specific
messages, list objects respond to:

Operation Description Usage
l._set_(i,v) sets element at index i of list l to value

v
l[i] := v

l.removeAt(i) removes the element at index i out of
list l

l.removeAt(i)

l.remove(e) removes all elements out of l, which
are equal to e

l.remove(e)

3.2.3 String
String objects are special sequence objects, whose attributes are limited to the
previously introduced domain of Unicode characters. The following methods
define specific messages available for string objects:
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Operation Description Usage
s.join(seq) creates a new string out of a se-

quence of strings seq by folding
the sequence, concatenating each
element with the sting s

s.join(seq)

s.split(sep) splits string s after the occurrence
of each string sep

s.split(sep)

s._mul_(n) concatenates string s exactly n
times with s

s * n

s._add_(t) concatenates string s and string t s + t
s.substring(o,n) returns n characters from string s

starting at index o
s.substring(o,n)

String objects are immutable, but there is a mutable equivalent MutableString
class for cases where performance is important while performing many oper-
ations on a string object-.

3.2.4 MutableString
The MutableString class provies a mutable alternative to String. It inherits from
String and List and therefore offers the methods of both classes.

3.3 Maps

Maps are associative arrays, whose elements are not identified by indices, but
are associated with some arbitrary key object. Elements inside a map do not
have any order. Their type Map has two generic type parameters. The first
one determines the type of a map’s keys, the second one determines the type
of its values.
The following methods define specific messages, map objects respond to:
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Operation Description Usage
m.isEmpty() returns true, if map m is empty m.isEmpty()
m.getSize() returns the number of elements

in map m
m.getSize()

m._at_(k) returns the element at key k of
map s

m[k]

m._set_(k,v) sets the element at key k of map
m to v

m[k] := v)

m.remove(k) removes the element at key k
out of map m

m.remove(k)

m.getKeys() returns a sequence of all keys in
m

m.getKeys()

m.getValues() returns a sequence of all values
in m

m.getValues()

m._contains_(k) returns true if k is a key in m k in m
m.contains(k, v) returns true if k, v is a key-value

pair in m
m.contains(k, v)

3.4 Functions and Procedures

Functions and procedures are objects. They consist of an arbitrary number
of parameters and a sequence of statements (a block, see section 5.1), which
is also called the body of a procedure. The type of the parameters is defined
by the generic type parameters of the Procedure class, which is illustrated in
Appendix B.
Procedures also respond to one special message: a call. Calling a procedure
named proc with parameters p1, . . . , pk has the following form:

procpp1, . . . , pkq

A call executes all statements of a procedure. Aside from all other messages,
procedure calls do not have any response value.
Functions are special procedures. They share the functionality with proce-
dures but additionally have a return value. The type of the return value is
determined by an additional generic type parameter. Calling a function will
return this attribute as a message response.

3.5 Further Objects and the Data Model

Since every object has a type that refers to a class, relations between objects
can be visualized as class diagrams. An overview of predefined classes is
given in Appendix B.
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3.5.1 Object and Identity
The type Object is the root of the type hierarchy. All further types inherit from
object, directly or indirectly. The type Object itself is an abstract type (more on
abstract classes in chapter 7). It is not possible to instantiate Object explicitly.
The ID attribute of an object is of type Identity. This built-in type encapsulates
an objects unique address. By deriving from the abstract type Equal, identities
are comparable, providing equality checks on objects.

3.5.2 Class
The type Class directly inherits from Object, since it defines the most general
kind of objects. All class objects share two basic features:

1. A name,

2. A set of super classes.

Similarly to procedure objects, classes are callable. Calling a class object trig-
gers the constructor of the class, which leads to the instantiation of an object
(for details see chapter 7).

3.5.3 Abstract Types
The data model makes use of abstract type classes to bundle common function-
ality or interfaces that are shared among similar classes (for a definition of
abstract classes see subsection 7.2.3).

Equal

The abstract Equal class contains abstract methods, which ensure the interface
for equivalence-tests on different objects.

Operation Description Usage
o._eq_(p) returns true if p equals o o = p
o._neq_(p) returns true if p does not equal o o != p

Ordered

The abstract Ordered class contains abstract methods, which ensure the inter-
face for comparing objects. Ordered inherits from Equal.

Operation Description Usage
o._lt_(p) returns true if p is less than o o < p
o._gt_(p) returns true if p is greater than o o > p
o._leq_(p) returns true if p is less than or equals o o <= p
o._geq_(p) returns true if p is greater than or equals o o >= p
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Arithmetic

The abstract Arithmetic class contains the interface for the five basic arithmetic
operations (addition, subtraction, multiplication, division and the power func-
tion). The Int and Float classes inherit from Arithmetic. Also, Arithmetic inherits
from Ordered.

Operation Description Usage
o._add_(p) adds the value of object p to value of object o o + p
o._sub_(p) subtracts the value of object p from value of object o o - p
o._mul_(p) multiplies the value of object p by value of object o o * p
o._div_(p) divides the value of object p by value of object o o / p
o._pow_(p) multiplies the value of object p by value of object o o ^ p

3.5.4 Exception
The abstract type Exception is the basic type of all runtime errors. Exceptions
are objects, whose type derives from Exception. For more information on Ex-
ceptions see section 5.8.

Operation Description Usage
e.getMessage() returns the message of the exception e.getMessage()
e.getTrace() returns the stack trace of the exception e.getTrace()
e.getLine() returns the line where the exception occurred e.getLine()
e.getFile() returns the file where the exception occurred e.getFile()
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4 Expressions

Expressions are syntactical constructions that evaluate to an object. They bind
values – introduced in chapter 3 – to syntactical elements.

expression ::= literal
| ' ( ' expression ')'
| name
| unaryOperator expression
| expression binaryOperator expression
| conditionalExpression
| aggregation
| functionCall

4.1 Literals

In chapter 2 all available literals have been introduced. Those refer to the
objects of type Int, Float, Bool, Char and String, described in chapter 3.
Note that string literals create objects of the immutable String class, while
mutable strings have to be explicitly converted by using the MutableString
constructor.

4.2 Collections

The syntax of collections refers to aggregates, which compose values to cre-
ate new expressions. Since all collections are generic, their semantics is not
directly expressed by the corresponding syntactical elements. Elements of a
collection have to be homogeneous, but they may still differ in their actual
type, as long as they are subtypes of the class’ type parameter. Syntactically,
there are two kinds of collections:

collection ::= map
| sequence

Map. Maps correspond to the following syntactical structure:

map ::= '[' [ keyValuePair { ',' keyValuePair } ] ']'
keyValuePair ::= expression ':' expression

The following examples correspond to valid map objects:
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["abc": 123] // Map of string keys and integer values
[42: "Hello", 153: "World"] // Map of integer keys and string values

Sequences
There are three types of sequences available:

sequence ::= array
| list
| string

Array. Arrays are represented by the following syntax:

array ::= '[' [ expression { ',' expression } ] ']'
| range

When evaluating an expression of the above form, all expressions will be
counted first. After that, an array object will be created, whose size equals
the element count in the expression. The expressions will then be evaluated
(from left to right), binding the resulting objects on their respective indices in
the new array object.
Arrays of integers intervals can be created by using a special syntax for ranges.

range ::= '[' expression '..' expression ']'

The first and last expression in a range have to be integer objects. Consider
a range r with the expressions being a and b. The relations between a and b
result in the following ranges:

Relation of a and b Range
a “ b [a]
a ă b [a, a` 1, . . . , b]
a ą b [a, a´ 1, . . . , b]

List. Lists do not provide special syntax. Creating a list object is similar to
the creation of arbitrary objects: by calling the class corresponding to the type
of the object. To create a non-empty list, it is possible to parameterize this call
with an array, as the following example shows.

List() // creates an empty list
List([1, 2, 3, 4]) // creates a list of integers 1, 2, 3 and 4
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4.3 Names

Every object can be bound to a name. Referencing that name accesses the
associated object. The following kinds of names can be distinguished:

name ::= ClassIdentifier | variable

variable ::= variableName
| expression '.' variableName // regular access
| expression '´>' variableName // silent dynamic access
| expression '[' expression ']' // subscription

variableName := Identifier | ConstantIdentifier | self

The most simple names are ClassIdentifier, Identifier, ConstantIdentifier and the
keyword self. Evaluating a constant identifier returns the constant bound to
that name. Similarly, evaluating an identifier returns a variable, while evalu-
ating a class identifier returns the corresponding class. The semantics of the
keyword self is described in subsection 7.1.1.
Variables are a special case of names, since they represent an address in mem-
ory. Thus they can be used on the left-hand side of an assignment.
Names occur in different scopes. For example the name of an attribute a
of some object o1 may not be known to some object o2. Qualifying a name
resolves that issue. Considering an object o with a feature f , the following
qualifiactions are possible:

o.f
o->f

Qualifying a name first evaluates the name of the receiver object o. The name
of the feature f is then looked up in the scope of the class of o by using the
access operation (. or -> respectively). The result of the access expression is
the requested feature. The feature lookup is done via dynamic dispatch. This
means that the returned feature does not only depend on the static type of the
variable containing o, but also the dynamic type of o is considered in order to
find the correct feature.
If the requested feature is a procedure (or function), the actual parameter
types of the procedure call are used to determine the correct overloaded ver-
sion ot that procedure (if the procedure is overloaded at all). For a detailed
description of the overload mechanism see section 6.6.

4.3.1 Function and Constructor Calls
A function call is a special procedure call. While procedure calls execute the
body of a procedure with a number of actual parameters (without returning
any value), function calls execute the body of a function similarly, returning
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the value of a return statement inside it. Function calls follow the syntax of
procedure calls:

functionCall ::= expression '(' [ expression { ',' expression } ] ')'

In a function call NpA1, . . . , Akq, the name N must be bound to a non-empty
set of overloaded functions F. Exactly one procedure f P F must be given
with k formal parameters of types t1, . . . , tk that fit best to the types u1, . . . , uk
of the actual parameters A1, . . . , Ak (see section 6.6 for details on overload res-
olution). A function call NpA1, . . . , Akq is executed as follows: The name N
is evaluated in the context of the actual parameter types u1, . . . , uk to yield a
procedure object f . The actual parameters A1 ... An are evaluated to yield ar-
gument objects a1 ... ak, which are assigned to the formal parameters x1, . . . , xk,
which are local variables inside the procedure. Finally, the body of f is exe-
cuted.
Functions which are bound to classes are called methods. Methods are always
qualified by the name of the corresponding object. The qualification therefore
specifies the receiver object for the function application. If an object calls one
of it’s own methods, a call has to be qualified by the keyword self.
Function names can also be represented by ClassIdentifiers, providing a short-
hand syntax for constructor calls, which will be further introduced in chap-
ter 7. These special function calls evaluate to a new instance of that class.

4.3.2 Subscriptions
Accessing the element at index i of a sequence s is done by using subscriptions.
There are two cases where subscriptions may occur.

t := s[i] // subscription as rvalue
s[i] := t // subscription as lvalue

Any subscription will first evaluate the expression s to the receiver object.
After that, a special operation is invoked on that object, depending on whether
the subscription appears on the left-hand side of an assignment or not. If
the subscription appears on the left-hand side, the _set_(i,v) method is
invoked, where i is the index of the subscription and v is replaced by the
right-hand side of the assignment. Otherwise, the _at_(i) method is invoked,
parameterized with the value of the index i.
The two subscription methods are implemented on sequence classes, but may
also be implemented in user-defined classes in order to allow subscription.

4.4 Operators

Operators are syntactic sugar for special method calls. Binary operators can
be written as e1 b e2 with e1, e2 being expressions and b a binary operator.
Unary operators can be written as b e with e being an expression and b the
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unary operator.
An expression e1 b e2 is translated into a method call: e1._opMethod_(e2),
where _opMethod_ is a method of e1. Similarly, an expression b e1 is trans-
lated into a method call: e1._opMethod_(), where _opMethod_ is a method
of e1. The exact mapping and a list of available methods for operator notation
is shown in the following:

Binary Operators
The following table shows all available binary operators.

Operator Method Translation Description
x + y x._add_(y) Addition
x - y x._sub_(y) Subtraction
x * y x._mul_(y) Multiplication
x / y x._div_(y) Division
x % y x._mod_(y) Modulo Division
x ^ y x._pow_(y) Power
x = y x._eq_(y) Equality Check
x != y x._neq_(y) Inequality Check
x < y x._lt_(y) Less-Than Check
x > y x._gt_(y) Greater-Than Check
x <= y x._leq_(y) Less-Than-or-Equal Check
x >= y x._geq_(y) Greater-Than-or-Equal Check
x in y y._contains_(x) Contains Check

Most of the binary operators are left associative. The only exception is the
power operator ^, which is right associative.
When evaluating an expression of the form e1 b e2, the left expression e1 is
evaluated first, returning the receiver object of the operation b. After that,
the operation b has to be resolved as a method of the returned object of e1.
Finally, the method is invoked, taking e2 as a parameter.
The in-operator evaluates different. Instead of taking the left expression as a
receiver object, the evaluation-strategy is reversed, taking the right expression
as the receiver and the left expression as a parameter.

Operator-Like Expressions

There are four further expressions which have a notation similar to binary
operators. However, their operations can not be translated into usual method
calls:
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Operator Description
is Instance-Check
as Typecast
and Logical Conjunction
or Logical Disjunction

The expression o is T checks whether o is an instance of the class T. Simi-
larly, the expression e as T performs a typecast, which causes the expression
e to be treated as it had the type T.
The logical conjunction and disjunction can not be translated into method
calls, since their expected evaluation strategy is different from usual method
calls. They provide a short-cirquit evaluation. In an expression x and y, the
term y does not have to be evaluated if x is already false. Similarly, in an
expression a or b, the term b does not have to be evaluated if a is already
true. In order to achieve this short-cirquit evaluation strategy, an expression
x and y is translated into y if x else false, while an expression a or b
is translated into true if x, else y (see also section 4.5). This only works
for x, y, a and b being of type Bool.

Unary Operators

Operator Method Translation Description
-x x.negate_() Negation

not x x.not_() Boolean negation

Unary operators of the form b e evaluate the expression e first. After that, the
operator b is resolved as a method-identifier. Finally, the resolved method is
called on the object, yielded by the evaluation of e in the first step.

Precedence
The following precedences affect the order of evaluation:
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Precedence Operator Description
2 - unary minus

not logical not
3 ^ power
4 * multiplication

/ division
% modulo

5 + addition
- subtraction

6 < less than
<= less than or equal
> bigger than
>= bigger than or equal

7 = equals
!= unequals
is type check

8 in contains check
9 and logical and
10 or logical or
11 as type cast

Evaluating an expression, which only includes operators from the same prece-
dence class, does not affect the default evaluation strategy. However, using
operators of different precedence without ensuring the evaluation strategy of
the expression by the use of parentheses, follows the above precedences. En-
closing an expression in parentheses does not change its value, so that the
expressions peq and e are equivalent.
Surrounding an expression with parentheses, encapsulates the expression in a
way that everything inside the parentheses is evaluated before any operations
outside the parentheses can be applied. Together with Monty’s default evalu-
ation mechanism, the following examples are equal to the expressions in the
comments:

1^2^3 // 1^(2^3)
1+2-3 // (1+2)-3
1-2*3+4 // (1-(2*3))+4

4.5 Conditional Expressions

Conditional expressions evaluate to different values, depending on a condition.

conditionalExpression ::= expression 'if' expression 'else' expression

The expression between both keywords if and else is called condition and
has to evaluate to a boolean value. According to the condition, a conditional
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expression evaluates to the first expression (in front of the if ), if the condition
is true, and to the last expression (behind the else) if the condition is false. Only
one of both sub-expressions will be evaluated.

-1 if x > 0 else 1
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5 Statements

A statement is executed in order to update variables.

statement ::= assignment
| compoundAssignment
| conditionalStatement
| loopStatement
| 'skip' ê
| 'break' ê
| procedureCall
| 'return' [ expression ] ê
| raiseStatement
| tryStatement

5.1 Block

A sequence of local declarations and statements forms the content of a block.
Local declarations are defined in chapter 6. An empty block is denoted by the
keyword pass.

block ::= ':' ê
ñ

( 'pass' ê| blockContent { blockContent } )
ó

blockContent ::= statement { ê}
| localDeclaration { ê}

A block is executed by elaborating its local declarations and executing its
statements in the order they appear. Indentation rules for blocks are defined in
the following subsection. The elaboration of declarations in blocks is defined
in section 6.5.

5.2 Structure and Indentation

The structure of a program is determined by indentation. Monty is line-
oriented such that statements are terminated by line breaks. For convenience
reasons, line breaks are ignored if it is obvious that an expression is not ter-
minated at the end of a line. This is the case if the number of opening braces
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does not match the numer of closing braces or if the second argument for a
binary operator is missing.
Blocks are introduced using the colon character at the end of a line followed
by indentation. Two types of blocks are distinguished:

1. Standard blocks are used as the body of a procedure or function, as well
as for bodies of if, elif, else, while, try and handle statements. They
contain local declarations and statements.

2. Class Bodies contain declarations which are features of a class.

The contents of a block, i.e. statements or declarations, must be indented
consistently (i.e. all elements of a block have to have the same indentation
level). The indentation of a block must be greater than the indentation of
the enclosing block. The syntax definition illustrates that by using ñ and ó

tokens (see section 2.2).

while true:
// Code block.
print("Hello World") // One space
print("Hello World") // One space

while true:
print("Hello World") // Six spaces
print("Hello World") // Six spaces

// The following will result in a compiler error as the second statement of
// the block has a different width/sequence.
while true:

print("Hello World") // Six spaces
print("Hello World") // Four spaces

5.3 Return Statement

A return statement may only occur in the bodies of procedures and functions.
It terminates the execution of a procedure, and defines the result value if the
procedure is a function.
In a procedure, the return statement has no argument. In the body of a func-
tion, a return statement must exist and an argument has to be specified to
determine the return value of the function. In a function body, every branch
of the control flow must end with a return statement return e, where e is an
expression and the type of e is compatible to the return type of the function.
It is possible to have more than one return statement in a function body, but
there must be exactly one return statement where every branch ends in (see
the example below).

30



Chapter 5. Statements The Monty Language Specification

// in both possible branches, a return statement is needed
Int max(Int x, Int y):

if x >= y:
return x

else:
return y

5.4 Assignment

Assignments update variables.

assignment ::= name ':=' expression ê

compoundAssignment ::= name compoundSymbol expression ê

compoundSymbol ::= '+=' | '´=' | '*=' | '/=' | '%=' | '^='

In an assignment v := e, the type of the expression e must be compatible
with the type of the variable v. (See section 7.3 for details.) An assignment v
:= e is executed as follows: The variable’s name is evaluated to yield a variable
v. The expression e is evaluated to an object o. The value of v is updated to o.
A compound assignment v b= e is executed to carry out the assignment
v := v b e where b is one of the compound assignment operators +, -, *, /,
% and ^. Examples for assignments are:

x := 25 // identifier x is updated to 25
person.name := "Bob" // person.name is updated to String "Bob"

i += 1 // a compound assignment,
// which is equivalent to i := i + 1

5.5 Conditional Statement

A conditional statement selects a statement block for execution, depending on
one or more boolean expressions.

conditionalStatement ::= 'if' expression block
{ ' elif ' expression block }
[ 'else' block ]

The expressions in a conditional statement must be of type Bool; they are
called conditions. A conditional statement

if C1 : B1 elif C2 : B2 . . . elif Ck : Bk [ else : Bk`1 ]

31



Chapter 5. Statements The Monty Language Specification

is executed as follows:
The conditions C1, . . . , Ck are evaluated from left to right, up to the first expres-
sion Ei that yields the value true. Then the corresponding block Bi is executed.
If all conditions evaluate to false, the block Bk`1 is executed, if present.

if x = 7:
print("x equals seven")

elif x = 8: // optional
print("x equals eight")

else: // optional
print("x equals, neither 7 nor 8")

5.6 Looped Conditional Statement

A conditional loop executes a statement block as long as a condition holds.

loopStatement ::= 'while' expression block

The statement block of a loop is called its body. A conditional loop statement
while C : B is executed as follows: The condition C is evaluated; if this
yields true, the block B is executed, and the loop while C : B is executed
again.
The statements break and skip may only occur in loop bodies. They modify
the execution of a loop body as follows: The statement break terminates the
execution of the innermost enclosing loop. The statement skip terminates the
current execution of the innermost enclosing loop body, and continues the
execution of that loop, by evaluating its condition.

Int x := 0
while x < 10:

print(x)
Int y := getRandomInt(0,10)
if y < 3:

skip // skips the rest of the current iteration step
elif y = 4:

break // ends the whole loop immediately
x := x+1

5.7 Procedure Call

A procedure call executes the body of a procedure with a number of expres-
sions, which are called its actual parameters.

procedureCall ::= name '(' [ expression { ',' expression } ] ')'
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In a procedure call NpA1, . . . , Akq, the name N must be bound to a set of
procedures P. Exactly one procedure p P P must be given with k formal
parameters of types t1, . . . , tk that fit best to the types u1, . . . , uk of the actual
parameters A1, . . . , Ak. (See section 6.6 on overload resolution for details.)
A procedure call NpA1, . . . , Akq is executed as follows: The name N is evalu-
ated in the context of the actual parameter types u1, . . . , uk to yield a procedure
object p. The actual parameters A1 ... An are evaluated to yield argument ob-
jects a1 ... ak, which are assigned to the formal parameters x1, . . . , xk, which
are local variables inside the procedure. The body of p is executed. p may
also be a function. In this case, the result value of the call is ignored.

5.8 Exceptions

Exceptions deal with run-time errors and other exceptional situations that may
arise during the execution of a program. An exception is an object that signals
a runtime error in a way so that it can be raised in one context, and handled
in another context of the program. The handling of expressions is specified
with two statements, which are defined in the following subsections.

5.8.1 Raise Statements
A raise statement raises an exception.

raiseStatement ::= 'raise' [ expression ]

In a raise statement raise e, e denotes an expression of type Exception. The
execution of a raise statement raise e(msg) raises the exception named e with
the error message msg.
If the expression e is missing, the raiseStatement must occur in the block of
some handler. In this case, it raises the exception caught by this handler again.

5.8.2 Handle Statements
A handleStatement equips a block with a sequence of exception handlers.

handleStatement ::= 'try' block
handler { handler }

handler ::= 'handle' [ ClassIdentifier identifier {',' ClassIdentifier identifier } ]
block

In a handleStatement

try :B handle E1e1 :B1 . . . handle Ekek :Bk,

the identifiers occurring in the identifier lists E1, . . . , Ek must be declared as
exceptions, by use in a raise statement in the program or in the standard li-
brary, and, they must be distinct to each other. The names ei are available as
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local variables inside the handler block and refer to the corresponding excep-
tion object of type Ei.
A handler of the form hi “ handle ei,1 . . . ei,ni :Bi is said to catch the excep-
tions ei,1, . . . , ei,ni , where ni ą 0 and 1 ď i ď i. We say that a handleStatement
catches all exceptions caught by one of its handlers, and propagates all other
exceptions. Furthermore a block B propagates (all) exceptions if it does not con-
tain a corresponding handleStatement.
During the execution of a program, if the execution of a construct a is defined
to consist (in part) of the execution of construct b, then while b is executing,
the execution of a is said to dynamically enclose the execution of b. The inner-
most dynamically enclosing execution of a given execution is the dynamically
enclosing execution that started most recently.
When an exception e is raised by the execution of a given construct a, the rest
of the execution of a is abandoned; that is, any portions of the execution that
have not yet taken place are not performed. The construct a is completed.
Then:

• If the construct is a block of a handleStatement that catches e, e is handled
by executing that handler; this means that the block of the handler is
executed instead of the abandoned portion of a.

• Otherwise, e is propagated to the innermost enclosing execution, which
means that e is raised again in that context.
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6 Declarations

A declaration binds an entity to a name. Every declaration is valid in a certain
scope. The visibility rules for declarations and the nesting rules for scopes are
described in section 6.5. The following types of delcarations will be described
in the following sections:

declaration ::= localDeclaration
| classDeclaration

localDeclaration ::= variableDeclaration
| constantDeclaration
| procedureDeclaration
| functionDeclaration

6.1 Variable and Constant Declarations

A variable is a name for an object through which it can be accessed. The
variable’s type indicates the kind of object that may be assigned to it.

variableDeclaration ::= type Identifier [ ':=' expression ] ê
constantDeclaration ::= type ConstantIdentifier ':=' expression ê

type ::= { name '.' } ClassIdentifier ['<' type { ',' type} '>']

When a variable declaration is elaborated, a location is allocated and associ-
ated with the variable’s name. Variable declarations can be combined with
assignments (see section 5.4), which is called initialization. It is a short-hand
notation for declaring a variable and assigning an object to it. The value of a
variable is undefined if an object has not been assigned. If read access on a
possibly uninitialized variable is detected, the compilation will fail.
A constant is similar to a variable. The only difference is that it must be
initialized, and that it cannot be changed afterwards. Constant identifiers
must only use uppercase letters.

Int i // an uninitialized Int variable
String greet := "Hello" // a String variable
Float PI := 3.14159 // a Float constant
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6.2 Procedure Declarations

A procedure abstracts from a sequence of statements. Procedure declarations
bind names to procedures and may be parameterized.

procedureDeclaration ::= procedureHead ':' block

procedureHead ::= Identifier '(' [ formalParameters ] ')'

formalParameters ::= parameter { ',' parameter } { ',' defaultParameter }
| defaultParameter { ',' defaultParameter }

parameter ::= type Identifier
defaultParameter ::= type Identifier ':=' expression

The block of a procedure declaration is called the procedure’s body. The formal
parameters and the body of a procedure form a scope. The actual parameters
are available through the names of the formal parameters and can be used as
local variables. Names from the enclosing scope are visible within a proce-
dure, unless they are shadowed. For the definition of visibility see section 6.5.
Once a procedure is called, the values of the argument objects which are
passed to the call are then assigned to those variables. Assigning a new ob-
ject to a parameter will not change the object outside the procedure’s body.
However, mutating the object itself (i.e. calling a setter-method) leads to side
effects outside the procedure’s body:

Person jDoe := Person("John", "Doe")
Person jSmith := Person("John", "Smith")

johnToJane(Person p, Person q):
p := Person("Jane", "Doe") // changes the reference
q.firstName := "Jane" // changes the object

johnToJane(jDoe, jSmith)
print(jDoe) // John Doe
print(jSmith) // Jane Smith

Formal parameters may be initialized in the procedure declaration. In this
case they are called default parameters. They are syntactic sugar for overloading,
which is described in section 6.6. When a procedure with default parame-
ters is called, only the mandatory (i.e. not initialized) parameters have to be
passed, the default ones are optional. If the argument for a default param-
eter is missing, the default value will be taken. Default parameters always
have to be the last parameters in the list and must not be followed by manda-
tory parameters. If one parameter has a default value, all of the follwing
parameters are expected to be optional. A procedure call ppE1, . . . , Ekq where
p is a procedure of the form ppx1, . . . , xm, d1, . . . , dnq with m ď k is evaluated

36



Chapter 6. Declarations The Monty Language Specification

as follows: The actual parameters E1, . . . , Em are assigned to the mandatory
formal parameters x1, . . . , xm such that xi :“ Ei and 1 ď i ď m. The re-
maining actual parameters are assigned to the default parameters such that
di :“ Em`i @i ď k ´ m. The remaining default parameters are filled with
their default values. In fact, this mechanism is a syntactic sugar for overload-
ing (see subsection 6.6.2). The example below shows a procedure having one
mandatory parameter:

greet(String name):
print("Hello " + name + ", how are you?")

The type of a procedure object depends on the number and type of its param-
eters. The procedure in the example above expects a String parameter. It has
the type Procedure<String> (see chapter 7 for information on generic types).

6.3 Function Declarations

Functions are a special case of procedures. While proper procedures, as de-
scribed in the previous section, abstract from statements, function procedures
abstract from expressions.

functionDeclaration ::= type procedureDeclaration

The return statement is used to return objects of the functions return type.
The body of a function has to contain a return statement for any possible
outcome (e.g. in different if-else branches) so that it is not possible that the
function does not return anything.

String stringifyValues(Int a, Float b):
if a = b:

return "a and b are " + a.toString()
else

return "a is " + a.toString() + " and b is " + b.toString()

The type of a function is defined by its parameter and return types.
The function in the example above expects a parameter of type Int and
one of type Float, while it returns a String object. It has the type
Function<String : Int, Float>.
Since Function is a subtype of Procedure, a Function<X : Y, Z> object can
be used anywhere where a Procedure<Y, Z> object is required (but not vice
versa, since the return type would be missing, see subsection 7.3.3).

6.4 Class Declarations

A class is a blueprint for an object. When an object is instantiated from a
class, its type is the class itself. A class declaration binds a name to a class.
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This section briefly describes class declarations. For more information on the
semantics of classes see chapter 7.

classDeclaration ::= ['abstract'] 'class' ClassIdentifier
[ '<' ClassIdentifier { ',' ClassIdentifier } '>' ]
[ 'inherits' typeList]
classBody

typeList ::= { name '.' } type
{ ' , ' { name '.' } type }

classBody ::= ':' ê
ñ

(featureDeclaration { featureDeclaration } | 'pass')
ó

featureDeclaration ::= [accessModifier] ( variableDeclaration
| constantDeclaration
| methodDeclaration )

visibilityModifier ::= '+' | '~' | '#' | '´'

methodDeclaration ::= functionDeclaration
| procedureDeclaration
| abstractMethodDeclaration

abstractMethodDeclaration ::= 'abstract' [ type ] Identifier
' ( ' [formalParameters] ')' ê

The class features may be declared with their visibility modifiers, which re-
strict their visibility (described in subsection 6.4.1). Abstract classes and ab-
stract methods are denoted with the keyword abstract. If some method of a
class is abstract, the whole class is abstract.

6.4.1 Visibility Modifiers
The visibility of every feature of a class is determined by a visibility modifier.
The following visibility modifiers are available in Monty:

Symbol Name Description
+ Public visible everywhere
~ Package visible inside the package (see section 8.2 for details)
# Protected only visible inside the class and all its subclasses
- Private only visible inside the class, itself

If no access modifier is provided, the default visibility is Package. The visibility
of a feature of some super class can not directly by changed in a subclass,
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but an overriding method may define a different visibility modifier than the
overridden one (see section 7.3 for more details on overriding and inheritance).

6.5 Visibility and Scopes

A block (as described in section 5.1) is a sequence of statements. Every block
forms a scope. Scopes may be nested, since the corresponding blocks may
contain other blocks. The following syntactical elements form a block:

• a module declaration

• the body of a class

• the body of a procedure (or a function, respectively), including its formal
parameters

• the body of a conditional statement

• the body of a while loop

• the bodies of try and handle statements

Aside from two special cases, a block may contain arbitrary declarations. The
first exception is that class declarations may only occur directly within a mod-
ule, so it is not possible to declare a class within the body of a function, a
while-loop or another class. The second exception is the class body itself. It
may only contain declarations, but no statements other than variable decla-
rations (possibly combined with assignments). If a scope A contains another
scope B, we call A the enclosing scope.
A declaration is visible within the scope in which it is defined. Furthermore
it is visible within scopes contained in that scope. An entity which is defined
in the current scope is called local. Local declarations must be distinguishable
from each other. Classes, variables and constants are distinguishable if their
names differ (that basically means that a scope may only contain one class,
variable or constant declaration with the same name). Procedures and func-
tions have a more complex distinction, called overloading, which is described
in section 6.6.
Although variable names must not be declared twice within the same scope,
names from enclosing scopes may be reused for declarations in inner scopes.
If a scope contains a declaration using a name from an enclosing scope, the
outer declaration will be hidden by the inner one. Then it is only accessible if
the enclosing scope has a name (e.g. modules or classes) and thus, a qualified
access is possible.
There is a different behavior considering the visibility of variables and other
declarations (classes, procedures and functions). Variables are linearly visible.
This means that a variable is only visible from its declaration to the end of the
block. Procedures and classes are simultaneously visible, meaning that they
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are visible in the entire block. Thus, procedure calls and class instantiations
may appear before their declaration, as the following example shows:

Bool odd(Int num):
if num = 0:

return false
else:

return even(abs(num)-1)

Bool even(Int num):
if num = 0:

return true
else:

return odd(abs(num)-1)

6.6 Overload Resolution

In contrast to variable and class declarations, different procedures may have
the same name, as long as they are distinguishable. Two procedures are distin-
guishable if they differ in number and type of their parameters. To determine
which of the overloaded procedures is actually called, the best-fit-principle is
used. Procedures with the desired parameter count are considered first. Then
it is tested which parameter list fits best to the argument types of the call
(according to the type system). If no suitable parameter signature is found,
the procedure call can not be resolved. The argument types are incompatible
if the type of an argument is not a subclass of the corresponding parameter
type.

6.6.1 The Best-Fit-Principle
First, a list of possible candidates is generated, which contains all visible pro-
cedures with a matching name. The candidate list is sorted, so that dec-
larations of the current scope occur first while declarations from enclosing
scopes follow subsequently. Then the number of the candidate’s parameters
is checked against the call. All candidates with a parameter count different to
the call are eliminated.
To find the declaration that fits best, the types of the parameters are rated
according to their relationship to the actual argument types. If an argument
and the correlating parameter have incompatible types, the declaration is re-
moved from the candidate list. If the types are exactly equal, the distance of
the particular parameter is 0. If the type is compatible, but not exactly equal
(e.g. if a Number is expected and an Int is given), the distance is a number
describing the relation between both types. If the given type directly inher-
its from the expected type, the distance is 1. The distance increases with the
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distance between both types in the type hierarchy. If a type inherits from mul-
tiple superclasses, the shortest distance in the inheritance hierarchy is taken
into account.
The distance of a declaration is the sum of the distance of its parameters. If
an exact match is found (i.e. a declaration with a distance of 0), the algorithm
stops. If all declarations are rated and no exact match is found, the declaration
with the lowest distance is called. If there are two declarations with the same
distance being the best fit, the particular case can not be resolved and the
compilation fails due to ambiguity.

printValue(Object x):
print("Object: ")
print(x)

printValue(Number x):
print("Number: ")
print(x)

printValue(Int x):
print("Integer: ")
print(x)

printValue(7) // >> Integer: 7
printValue(4.2) // >> Number: 4.2
printValue("Hello") // >> Object: Hello

class ValuePrinter:
initializer():

printValue(7) // >> Integer: 7
self.printValue(7) // >> Integer from method: 7

printValue(Int x):
print("Integer from method: ")
print(x)

ValuePrinter vp := ValuePrinter()

In the example above, there are three overloaded versions of the procedure
printValue. The procedure calls have different argument types. The first call
provides an Int object. The procedure with the type Procedure<Int> has
a distance of 0, since the argument type is exactly the parameter type. The
procedure Procedure<Number> has a distance of 1, because Int inherits from
Number. The Procedure<Object> has a distance of 3, because Int inherits
from Number which inherits from Ordered which inherits from Object. In
this case, the Procedure<Int> is an exact match. The second procedure call
provides an argument of type Float. Since this type inherits from Number, the
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second procedure is called. The third call provides a String argument. Since
String is not related to either Int or Number, the only fitting declaration is
the first one. The method printValue of the class ValuePrinter can not be
confused with the other procedures, since it can only be accessed by using the
self keyword from inside the class.
The following example shows possible ambiguities:

printTwoItems(Object x, String y):
print("Object:" + x.toString())
print("String:" + y)

printTwoItems(String x, Object y):
print("String:" + x)
print("Object:" + y.toString())

printTwoItems(1, "Hello") // ok, 1st definition is used
printTwoItems("Hello", 1) // ok, 2nd definition is used
printTwoItems(1, 1) // incompatible types
printTwoItems("Hello", "Hello") // ambiguous call

The first two procedure calls work fine. The first one calls the first procedure
Procedure<Object, String>. The second call matches best with the proce-
dure of type Procedure<String, Object>. The third call is not resolvable.
The argument type Int is not compatible with the parameter type String,
so that neither of the two procedures can be called. For the fourth procedure
call there are two possible candidates with the same distance – this call is
ambiguous and can not be resolved.
For parameters with generic types (see section 7.4), the distance is calculated
for each type parameter and summed up for the whole type. For a procedure
expecting a Map<Number, Object> and a call providing a HashMap<Int, Float>
the distance would be calculated as follows (this assumes the existence of a
class HashMap which directly inherits from Map):

total dist “ distpMap, HashMapq
` distpNumber, Intq
` distpObject, Floatq

“ 1` 1` 3
“ 5

Overloading Methods

The overload mechanism for methods works similar to overloading regular
functions or procedures. Method calls are always done qualified by their
reciver object. Therefore, methods and regular functions and procedures can
not be mixed up during overload resolution.
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Due to inheritance (see section 7.3) there is a special case, which has to be
considered when searching for overloaded methods. Let A be a class and B
be a subclass of A. Additionally let v be a variable of type A, which contains
an object of type B (which is allowed due to the subtyping rules). If a method
m is looked up at that variable, the overloading mechanism can only find
methods defined on class A, since it is not possible to statically determine the
dynamic type of v. This leads to the fact that a potential better match in class
B is not found. If B overrides the method m (i.e. the implementation of m in
B has the same signature as in A), the overridden implementation is called
at runtime, due to dynamic dispatch. The following example illustrates this
behavior:

class Person:
// ...

class Student inherits Person:
// ...

class Library:
register(Person p):

print("registered a new person!")
class UniversityLibrary inherits Library:

register(Student p):
print("registered a new student!")

Library lib := UniversityLibrary()
lib.register(Student()) // prints "registered a new person!"

6.6.2 Default Parameters and Overloading
Default parameters (as introduced in section 6.2) are syntactic sugar for over-
loading. If a parameter is initialized in the parameter list (i.e. it has a default
value), this will generate multiple overloaded versions of the procedure, with
and without the initialized parameter. The procedure drawCircle in the fol-
lowing example has one mandatory and one optional parameter:

drawCircle(Point center, Int radius := 1):
algorithms.bresenhamCircle(center, radius)

If the procedure is called without a second argument, a circle with the radius 1
is drawn. The two implicitly generated procedures are shown in the example
below:

drawCircle(Point center, Int radius):
algorithms.bresenhamCircle(center, radius)

drawCircle(Point center):
drawCircle(center, 1)
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7 Classes

Every object is an instance of a Class. Classes represent the internal structure
of an object, as well as its static behavior. Every class defines a type and every
type is defined by a class.

7.1 The Structure of Classes

Features of a class consist of method declarations, as well as variable and
constant declarations. All features of a class are simultaneously visible (see
section 6.5). Thus, inside a class scope a feature does not necessarily need to
be defined before it is used.

7.1.1 Access
Accessing a feature of an object can be achieved in two ways: Either by using
the regular access (denoted with a ' . ') or by using the silent dynamic access
("SDA", denoted with '´>'). Classes may define more than one method of the
same name that only differ in number and/or type of its formal parameters
(also referred to as overloading, see section 6.6). To avoid ambiguities between
class features, local declarations in methods and declarations from enclosing
scopes, access to features must always be qualified. A qualified access is
introduced by the name of the containing namespace (in the most cases the
containing object’s identifier), followed by the access symbol (either ' . ' or
'´>') and the name of the object accessed. By specifying the receiver object,
the scope is set for the lookup of the feature. If a feature of a class is accessed
from inside the class, the qualification has to be done by using the keyword
self.
Depending on the context of the access, features may not be accessible because
of visibility restrictions (see subsection 6.4.1). If the requested feature exists
and is available, accessing it returns a reference to that object. Otherwise a
compiler error will occur, or, in case of a dynamic access, an AccessException
will be thrown at runtime.

Regular Access

In general, accessing an object’s feature is done by using the ' . ' notation.
Considering an object o with a feature f , accessing f has to be qualified by
o. f .
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Silent Dynamic Access

Monty allows a second way of accessing object features. Every object owns an
attribute of type Map ă String, Object ą, which is used to implement dynamic
attributes. Objects can be extended at runtime by defining such dynamic at-
tributes, which are mappings from names to objects. They are defined and
accessed by using the silent dynamic access '´>' (also referred to as SDA). If
the SDA occurs on the left side of an assignment, either a new dynamic at-
tribute is defined, or an existing feature or dynamic attribute is overridden).
Consider the following creation of a feature of name f and value v an object
o:

o->f := v

As a result of that statement, the map of dynamic attributes is introduced a
new mapping from key f to value v. The new dynamic feature can only be
accessed by using SDA instead of the regular access: o-> f .
Unless the dynamic attribute is undefined, a silent dynamic access will yield
the associated value of the given name, located inside the receiver object’s map
of dynamic attributes. If there already is some regular feature with the same
identifier defined on the same object, the silent dynamic access will return
the regular one, since its priority is higher than any dynamic attribute. If the
dynamic attribute is undefined, a read access will result in an AccessException.

7.2 Instantiation

Instantiating a class means to create an object, based on the structure and
behavior defined by the class. The type of the object is the class itself. To
interact with the object, its attributes and methods can be directly addressed,
as long as their access is not restricted by an access modifier.
Instantiating a class is done by calling the class as a function. The return value
is the new instance. The instantiation process consists of the two sub-processes
construction and initialization.

7.2.1 Construction
Creating an object starts with allocating the memory that is needed to store
the new object in. The address to the allocated memory area is then bound to
some variable identifier as a reference to the new object. This process is called
construction.

Cls c := Cls()

Calling a class in the above way triggers the construction of an object of type
Cls. Memory for the new object will be allocated and the identifier c is bound
to its address. After that, the initialization process starts.
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7.2.2 Initialization
After an object has been constructed, its attributes need to be initialized. Ini-
tializing an object can be achieved by using initializers.
Initializers are special methods of a class. They are defined as procedures
and can be overloaded. Usually initializers are not called explicitly, but as a
part of the instantiation of a class. Every class implicitly includes a default
initializer, which does not have any parameters. Default initializers evaluate
all initializing declarations inside the body. The initialization process will
always call the default initializer of a class first. After that, specific initializer
calls may follow. Consider the following example class:

class InitializerDemo:
~ Int x := 13
~ Int y := 2
+ Int z

+ initialize():
z := 013_2

The default initializer of the class will initialize the attributes x and y, binding
the values 13 and 2 on their respective attributes. The custom initializer only
needs to consider the initialization of attribute z, since x and y have already
been initialized.
User-defined initializers may require parameters. The given parameter values
can be assigned to attributes of the class or be used to determine the specific
initialization value of some attribute. By providing parameterizable initializ-
ers, objects can be initialized in different ways, based on the number and type
of arguments passed to the constructor call.
In order to support the co-existence of multiple initializers which all have
the same name but differ in the number and type of their parameters, Monty
heavily relies on overloading.

7.2.3 Abstract Classes
Abstract classes are specified with the keyword abstract in front of the class
keyword of a classes declaration. They can not be instantiated directly, but
may have initializers, which can be called by subclasses.
Methods of an abstract class may be themselves abstract. If a class contains
at least one abstract method, it has to be defined as an abstract class. How-
ever, abstract classes may not contain any abstract methods at all and still be
defined as abstract classes.
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7.3 Inheritance

As introduced in section 6.4, a class declaration may include the inherits key-
word, followed by a various number of parent classes. By the use of that kind
of declaration, all features from each parent class become features of the new
class. Private features are not visible within derived classes. Features of a
class which have been derived from a parent class will be referred to as inher-
ited features.
The default initializer of the inherited class will automatically be called during
initialization. Initializers of parent classes may be called by other initializers.
However, an inherited initializer can not be used to initialize a derived class.
Instead, a new initializer has to be defined in the derived class, which calls
the parent initializer.
If the parent class is abstract, all abstract inherited features must be imple-
mented. Otherwise the new class is abstract itself and has to be denoted as
such.

7.3.1 Parent Initializers
Accessing features from one or more parent classes can be achieved only by
using the parent-keyword:

parentExpression ::= parent '(' type ')' '.' expression

Vorschlag: Parent raus, stattdessen (self as ParentClass).feature

Evaluating expressions of the above form by evaluating the qualification-part
of the access, resulting in a reference on a parent class. Using this reference,
the method defined by the method name can be located inside the set of
methods, inherited from the identified parent class.
Consider a class C that inherits from parent classes S1, . . . , Sk (in that order).
Instantiating class C constructs C as expected. However, the initialization
process calls the default initializer of class C. Since C inherits from super
classes, it’s default initializer will call the default initializers of S1, . . . , Sk (in
that order), before executing it’s own code. After that, user-defined initializers
may be called. Explicitly calling parent initializers is possible by using the
parent-function inside an initializer. Since classes may inherit from more than
one class, there may be more than one parent initializer to call.

7.3.2 Multiple Inheritance
Allowing a class to inherit from more than one parent class may lead to am-
biguity in the determination of a feature’s definition. Consider some class D
that inherits from classes B and C that each inherit from a class A. Such an in-
heritance structure will create a diamond-like shape in a class diagram. Class
A may contain some feature f which is inherited by B and C. The problem to
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determine, whether class D inherits feature f from B, from C, or from both, is
referred to as the diamond problem.
Consider a class C that inherits from parent classes S1, . . . , Sn (in that order).
The inheritance process of Monty can be summarized in the following steps:

1. Inherit all non-private features of the first parent class S1.

2. Inherit all non-private features of Sk which have not already been inher-
ited from S1, . . . , Sk´1.

By following the above rules, every feature is inherited once, preferring fea-
tures from the left-most parent classes. Non-inherited features are not lost,
though. They have to be accessed by using the parent keyword.

7.3.3 Subtyping
Every class defines a type. Whenever an expression of a certain type T is
expected, also an expression of a subtype S of T can be used. Subtypes are
defined according to the following rules:

1. Class C is a subtype of itself.

2. If a class C inherits from classes S1, . . . , Sk, then C is a subtype of S1, . . . , Sk.
Every subtype of C is a subtype of S1, . . . , Sk as well.

The concept of subtyping defines two different compatibilities of types. In
general, every occurrence of a type C can be substituted by a subtype Si of C.

7.3.4 Overriding
Overriding a method of some parent class means to redefine it inside a sub-
class. Calling an overridden method executes the block that is currently asso-
ciated with the method’s name. However, to successfully override a method,
there are some preliminaries to fulfill:

• The number, type and order of the overridden and overriding parameter
list have to be equal.

• When overriding functions, the original and new return types have to
be equal.

Overriding a method in a class has an impact on all its subclasses. If a method
is defined in a class A and overridden in a class B, all subclasses of B inherit
the overridden method, whereas all other subclasses of A inherit the original
method. Redefining attributes is not possible.
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Late Binding

Consider a class C with a non-private method m and subclasses S1, . . . , Sk that
inherit from C with the classes S1, . . . , Sl (l ă k) redefining m. By the rules
of subtyping any object of type S1, . . . , Sk can be used wherever an object
of type C is expected. If a program includes the access of method m on an
object of type C, it is not possible to determine, whether the object is of type
C, S1, . . . , Sk´1 or Sk.
Resolving the exact type is only possible at runtime. If the type is determined,
its implementation of the method m will be bound to the identifier m. This
process is referred to as late binding.

7.4 Generics

In Monty, the term “Generics” refers to generic classes. A class is called generic,
if its declaration includes at least one type parameter (see section 6.4 for the
syntax of class declarations).
The type parameter is a placeholder for a type. When instantiating a generic
class, every generic parameter is replaced by a concrete type. Whether the
instantiation of a generic class is possible with specific types can be checked
at compile time. Such a check is necessary to validate that the methods used
inside the class are compatible with the concrete types.
Consider the following declarations of array objects:

Array<Int> numbers := [1, 2, 3, 4] // array of integers, size 4
Array<String> names := Array<String>(25, "") // array of strings, size 25

The generic parameter from the class Array is resolved to the concrete types Int
and String. Two generics classes are considered compatible, if the following
condition holds: Consider a class C and a generic type parameter P. If CxPy
is a subtype of SxQy if and only if C is a subtype of S and P “ Q. This
behavior is also called invariance, since the generic type parameters have to
stay invariant in the inheritance graph.

7.5 Lifetime

When a class has been instantiated, an object will be stored in memory. The
created object stays available in memory (“alive”), as long as any active refer-
ence on that specific instance exists. Keeping an object alive means, keeping
all of its attributes alive, too.
Objects that have no further use inside a system will be garbage collected, mean-
ing an instance’s allocated memory will be released and all instance-related
information will be overwritten.
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8 Modules and Packages

Modules and Packages encapsulate classes. Both can be used as compilation
units. While a module is a .monty file, a package is a container for modules.

8.1 Modules

A Module is a file. Anything contained in this file is part of that module.
The name of the file (excluding the .monty file extension) is the name of the
module and thus must be a valid identifier (see section 2.3). Modules may
contain functions, procedures, classes and even single statements. They have
to be imported before any other declaration or statement (see section 8.3 for
more information on imports).

moduleDeclaration ::= { importStatement }
{ [accessModifier] declaration | statement }

Every module defines a scope. Elements in that scope can be accessed via
the module’s name. All statements inside a module, which are not part of
a declaration are executed when the module is first imported (also referred
to as initialization code). The declarations inside the module can be accessed
like object features, using the ' . ' access (subsection 7.1.1). Module features
also may have visibility specifiers (subsection 6.4.1), where private and pro-
tected basically have the same effect for module features since modules do not
support inheritance.

8.2 Packages

A package is a directory which contains Monty files or other packages. All
.monty files contained in that directory (i.e. the specific modules contained
therein) are part of that particular package. The modules inside a package
can be accessed like object features. Packages may not only contain modules
but also other packages which then are features of their containing package,
respectively. A package can also have initialization statements (in analogy to
the initialization code of modules, see section 8.3).

8.3 Import Mechanisms

Modules may import other modules or packages, as well as their respective
features using the import statement:
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importStatement ::= 'import' Identifier { '.' Identifier }
[ ' . ' (ClassIdentifier | ConstantIdentifier) ]
[ 'as' ( Identifier

| ClassIdentifier
| ConstantIdentifier) ]

The syntax for imports allows three different ways to import a module or
package:

import guilib
import guilib as gui
import guilib.window as win

The first line imports guilib, which can be either a module or a package. It
can be referenced by using the name guilib. The second line also imports
guilib. Using the as keyword, it is available using the name gui instead of the
module’s original name guilib. The third line imports the feature (this might
also be a module or package) window of the module guilib into the current
module. It is accessable via the name win. This can be used to shorten the
access expressions. All names of the import expression must reference either
modules or packages except the last one. In this case, window could be either
a module or a subpackage of the package guilib, or it could be a feature of a
module guilib.
When a module or a package is imported, first it is searched inside the di-
rectory of the importing module. If no module or package with the required
name is found inside that directory, the paths inside the environment variable
MONTY_PATH are searched. If a package or a module with the same name
exist inside the same directory, it is imported.
If a module contains initialization code (see section section 8.1), this code is
executed when the module is imported the first time. This leads to the effect
that the code of the importing module is executed last. Just like modules,
packages may also have initialization code, which must be located inside the
special module _package.monty. If no such file exists, all modules inside a
package will be imported in alphabetical order and thus be available as fea-
tures of the package. The only exception are modules and packages which
start with an underscore. Those can only be used from inside their containing
package. If there is a file _package.monty that module is the entry point for the
package. All names which are visible inside this module are features of the
package. In particular this applies for modules which are imported inside the
package file. The initialization code inside the _package.monty file is executed
when the package is imported.
Cyclic imports of modules and packages are possible. However, their initial-
ization code may not mutually access the other module/package, since this
would cause an endless recursion. The declarations, however, may use cycli-
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cally imported declarations.

chicken.monty

import egg

greet():
print("I am the chicken")
print("I am first!")

egg.greet()
greet()

egg.monty

import chicken

greet():
print("I am the egg")
print("I am first!")

chicken.greet()
greet()

The above example won’t work, because the initialization code of each module
uses code from the other module, which again has initialization code which
uses the own module. However, the example works if the modules would
look as follows:

chicken.monty

import egg

greet():
print("I am the chicken")
print("I am first!")

greet()

egg.monty

import chicken

greet():
print("I am the egg")
print("I am first!")

greet()

In this case the output depends on which module is executed. If chicken.monty
is executed, the first output is “I am the egg...”. If egg.monty is executed, the first
output is “I am the chicken...”. This example works, because the initialization
code of each module does not use the other one.

8.4 The Monty Core Library

The core library contains the basic data types (described in chapter 3), as well
as some core functionality like the print procedure and basic exception types.
This library is a built-in package which is located inside the directory of the
monty installation. Every module implicitly contains the following import
statement:

import corelib

Additionally the features of this package are directly accessible inside the
importing module, so that all core library features are available without an
explicit import statement and without a qualified package feature access.
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9 Rationale

9.1 Syntax

The syntax is inspired by Python[10] and Java[3]. The use of those two lan-
guages as a source for inspiration was justified by their popularity and in case
of Python by its conciseness.
One goal of Monty is to provide a compact and simple syntax, which allows
to write structured and readable code. To fulfill this goal, we try to call ev-
ery feature of Monty by its intention. For example, the keyword for handling
exceptions is not except or catch like in Python or Java, but handle (subsec-
tion 5.8.2).

Indentation. The most apparent Python heritage is the use of indentation
(section 5.2) to indicate blocks rather than curly braces or other symbols.
We endeavor to increase code readability and enforce consistently structured
code. The only difference between the indentation rules in Monty and Python
is that Monty not only allows expressions to be line-wrapped, if enclosed in
parenthesis, but also if the second operand for a binary operator is wrapped
to a new line.

Identifiers. Although Monty supports Unicode characters in string literals,
identifiers may only consist of ASCII characters (section 2.3) in order to increase
the readability. The reasoning behind this restriction is the fact that Unicode
identifiers will exclude certain user groups due to charset or font issues which
may result in letters not being displayed correctly.

Identifier Styles. Monty requires special notations for class, constant and
variable identifiers (see section 2.3). On the one hand this limits the freedom
of naming, on the other hand it reduces the amount of keywords (such as
const to indicate constants). Another consequence is a higher readability as
the kind of an identifier is more obvious.

Integers (subsection 2.7.2). Monty supports integer literals in different nu-
meric systems. By default, all numerical systems with a base ranging from
2 to 36 are available. Restricting the allowed bases to a maximum of 36 is
motivated by the fact that there are only 26 letters (A-Z, where the letters are
case insensitive) plus 10 digits (0-9) available.
Integer literals using bases other than 10 need a leading zero digit in order to
distinguish between identifiers and numbers.
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Float (subsection 2.7.3). Although other languages accept floating point lit-
erals with a leading decimal sign (like .4), Monty requires a leading 0. Again,
this is a decision in favor of readability.

Assignments. Languages like C++ [9] or Java [3] use the equality sign (“=”)
for assignments. This, however, collides with the equality operator. Often the
“==” symbol is used as a solution. This is often confusing. Therefore, Monty
uses “:=” for assignments (see section 5.4). This is not only the common
notation in mathematics, it also makes the “=” operator available to be used
in equality checks (which is also the correct notation in mathematics).

Operator Symbols. Unlike other languages (such as Ruby [2]), Monty re-
stricts operators symbols to a fixed set. This has the advantage that the prece-
dence and semantics for each operator is clearly defined. For example, the
semantics of a plus operator (“+”) is obvious from the context, while the se-
mantics of symbols like “‹” is not generally known. Also, if other symbols
were allowed, their syntax would not be obvious for the reader, especially in
question of infix or prefix notation.

Visibility Specifiers. The visibility of an object’s features is controlled by
visibility specifiers. The syntax of those specifiers corresponds to the standard
notation for UML class diagrams [8] (see subsection 6.4.1). This notation is
commonly used as it enables programmers to get a quick overview over the
class hierarchy but it may also be used as a means for documentation and
specification.

No List Literal. There is no literal for lists in Monty. The literals for Array
and Map (section 4.2) both base on the squared brackets. To create a literal for
lists, we would have to introduce a new kind of brackets. To keep the amount
of delimiters (section 2.3) small, we decided against it. Following the ideal of
a unique way to achieve a goal, list objects can only be created using an array
literal (e.g. List<Int>([1,2,3])).

break and skip. Although other languages like C call the same keywords
break and continue, Monty tries to name everything by its purpose. There-
fore the keyword, known as continue, which does not continue the current
loop iteration, but instead skips the rest of it, is called skip (see section 5.6).

parent Instead of super. Since one goal of Monty’s syntax is to name ev-
erything by its purpose, the function to access the features of a parent-class,
is called parent (see section 7.3) instead of super-function like in Java. To ac-
cess the features of the parent-class, it is also possible to use the class-name
instead of the parent-function. However, while designing the language we
decided only to grant access to the parent-class by using the function. This is
a decision in favor of readability.
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No Multi Line Comments. In Monty only single line comments exist. We
decided against multi line comments, in favor of readability. As with multi
line comments a block in one line or in one expression can be commented out,
the readability could be suffering.

Tabulator As One Character. Since Monty uses indentation to identify blocks,
beside the space-character also the Tab-character is important. The sequence
of LayoutCharacter (section 2.2), which defines the offset, is not only identified
by its length, but also by its order. For example, even if the sequences [TAB,
SPACE, TAB] and [TAB, TAB, SPACE] look the same in the editor, they are not
the same.

9.2 Semantics

9.2.1 General
Expressions and Statements. Monty is not an expression-oriented language.
This means that the language distinguishes between expressions and state-
ments. While expressions evaluate to an object, statements do not. One issue
of expression-oriented languages is that even control structures would need
to have a return type. Most expression-oriented languages introduce types
like void or None in order to deal with the arising problems. However, while
designing the language we decided not to integrate such a type. In analogy,
variables cannot have a null value contrary to Java[3]. This decision was made
as we regard null values as dangerous which also confirms Tony Hoare in his
statement about his “Billion Dollar Mistake”[4].

Garbage Collection. In a modern programming language it should not be a
necessity to be concerned about allocating and freeing memory, particularly if
the goal of the language is to fit the gap between scripting and programming
languages. This is why Monty advocates the use of a garbage collector (see
section 7.5) in its implementation.

Destructors. Destructors are used to free the memory allocated by an object
when its lifetime ends. Monty works without explicit destructors. Due to the
use of a garbage collector (see section 7.5) the moment of an object’s destruction
is unknown. Consequently, this also applies for the destructor call. For this
reason, memory management is reserved for the garbage collector and there
is no possibility of custom-defined destructors.

Overloading. Like most other programming languages Monty provides a
context-free overloading method (see section 6.6). This means that the signatures
of overloaded functions need to differ in type or count of their parameters.
The return type is not considered (in contrast to context-sensitive overloading).
We concluded that context-free overloading is less prone to ambiguity.
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The Default Visibility. Monty supports the four visibility specifiers public,
protected, private and package. When the visibility specifier is omitted, the vis-
ibility used is package which was nominated as the default visibility (see sub-
section 6.4.1). This allows to use the feature outside its class but also restricts
the visibility to the code of the same package, wherefore it is the most suitable
default visibility.

Module Headers. Monty uses the file-system to organize packages. There-
fore the name of a module is also the filename (see section 8.1). Since the name
of a module is bounded to its filename, we decided that a module header inside
a module is unnecessary.

9.2.2 Data Model
Array and Sequence In Monty every data collection inherits from the ab-
stract class Collection. Therefore, in many situations the programmer does not
need to distinguish between an Array and other sequence types like List.
The disadvantage of treating array types as regular classes is that the runtime
performance may suffer. On the other hand, it is more valuable to ensure that
everything is an object and that all sequence types have a common interface.

Operator. In Monty everything is an object, so are operators (see section 4.4).
Since operators are defined for particular classes (types), it is obvious to de-
clare them as instance methods. This way, operators are only syntactic sugar
for method calls. Handling operators as common methods has the advantage
that the overloading of operators is already given by regular overloading.

Voiding. Voiding is a term from ALGOL 68 [6, 5.1.7] which describes the
functionality to allow unwanted results to be thrown away. For example using
a function as a procedure call. Monty supports voiding. This is a consequence
of the data model in combination with subtyping (see subsection 7.3.3). Since
function inherits from procedure (see section 3.4), every procedure call can invoke
a function.

Type-Erasure. Monty does not support type-erasure. This means, generic type
parameters are not removed at runtime. Therefore the classes List<Int> is not
the same as List<Char>. As a result that the type system gets stronger.

9.2.3 Multiple Inheritance
Motivation. Multiple inheritance is often discredited to cause more prob-
lems than it solves. A common argument is the diamond problem [5]. Besides
that, it is the simplest and clearest inheritance strategy. Almost every language
which is restricted to single inheritance uses different strategies to overcome
the resulting limitations. Examples are interfaces, mixins and traits – all with
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the same goal: inheriting properties and methods from more than one parent
class. This is the motivation for Monty supporting multiple inheritance (see
subsection 7.3.2).

Implicit Inheritance Priority. One goal of Monty is to provide a language for
rapid development. By using an implicit strategy to handle name clashes in
multiple inheritance cases, this goal is a little bit closer. Other languages like
C++ [9] forbid using the same feature names in two different parent classes by
default. Monty does not. By using the order of inherited classes (see subsec-
tion 7.3.2), the name problem can definitely be solved at the time the class is
created. Also every shadowed parent class feature is still available using the
parent function.

Interfaces. Many object-oriented languages with single inheritance are us-
ing interfaces to overcome their inheritance limitations. Interfaces help classes
to share the same signature but they do not reduce redundant code because
functionality can not be inherited from interfaces. If a language supports mul-
tiple inheritance like Monty (see subsection 7.3.2), interfaces can be realized as
abstract classes.

Traits and Mixins Many modern scripting languages (like Ruby [2] and PHP
[7]) use traits or mixins to overcome the limitations of single inheritance. This
allows them to compose functionality into classes, regardless of how the in-
heritance hierarchy is set up. It is a quick way to abstract logic into separate
classes but it does not support clear object-orientation. Often the desired be-
havior should rather be achieved using aggregation.
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A Syntax Specification

Comment ::= '//' {EveryCharButNewline} ê

LayoutCharacter ::= Space | ê
LayoutSequence ::= LayoutCharacter { LayoutCharacter }

Space ::= ' \t ' | ' '
ê::= [ ' \r ' ] ' \n' { [ ' \r ' ] ' \n' }

Identifier ::= { '_' } LowercaseLetter { IdentifierSymbol }

ConstantIdentifier ::= { '_' } UppercaseLetter
{ UppercaseLetter | Digit | '_' }

ClassIdentifier ::= UppercaseLetter { IdentifierSymbol }
LowercaseLetter { IdentifierSymbol }

IdentifierSymbol ::= LowercaseLetter | UppercaseLetter | Digit | '_'

Digit ::= '0' | ... | '9'
LowercaseLetter ::= 'a' | ... | 'z'
UppercaseLetter ::= 'A' | ... | 'Z'

literal ::= BoolLiteral
| IntLiteral
| FloatLiteral
| CharacterLiteral
| StringLiteral

BoolLiteral ::= true | false

IntExponent ::= ( 'e' | 'E' ) [ '+' ] Digit { Digit }

Base ::= [ '0' | '1' | '2' ] Digit
| '3' ( '0' | ... | '6')

IntLetter ::= 'A' | ... | 'F'
| 'a' | ... | ' f '

IntLiteral ::= ( Digit { Digit } [ IntExponent ] )
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| ( '0' { IntLetter | Digit } '_' Base )

FloatingLiteral ::= Digit { Digit } '. ' Digit { Digit }
[ FloatExponent ]

FloatExponent ::= ( 'e' | 'E' ) [ '´' | '+' ] Digit { Digit }

CharacterLiteral ::= '\'' Character '\''
Character ::= UnicodeCharacter | CharacterEscapeSequence

StringLiteral ::= '"'
{ CharacterEscapeSequence | UnicodeStringCharacter }
'"'

expression ::= literal
| ' ( ' expression ')'
| name
| unaryOperator expression
| expression binaryOperator expression
| conditionalExpression
| aggregate
| functionCall

unaryOperator ::= not | '´'
binaryOperator ::= '+' | '´' | '*' | ' / ' | '%' | '^' | '=' |

'!=' | '<' | '>' | '<=' | '>=' | '´>' | in
operator ::= unaryOperator | binaryOperator
binaryOperatorLike ::= as | is | and | or

aggregate ::= map
| array

map ::= '[' [ keyValuePair { ',' keyValuePair } ] ']'
keyValuePair ::= expression ':' expression

array ::= '[' [ expression { ',' expression } ] ']'
| range

range ::= '[' expression '..' expression ']'

name ::= ClassIdentifier | variable

variable ::= variableName
| expression '.' variableName // regular access
| expression '´>' variableName // silent dynamic access
| expression '[' expression ']' // subscription
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variableName := Identifier | ConstantIdentifier | self

conditionalExpression ::= expression 'if' expression 'else' expression

block ::= ':' ê
ñ

( 'pass' ê| blockContent { blockContent } )
ó

blockContent ::= statement { ê}
| localDeclaration { ê}

assignment ::= name ':=' expression ê

compoundAssignment ::= name compoundSymbol expression ê

compoundSymbol ::= '+=' | '´=' | '*=' | '/=' | '%=' | '^='

conditionalStatement ::= 'if' expression block
{ ' elif ' expression block }
[ 'else' block ]

loopStatement ::= 'while' expression block

procedureCall ::= name '(' [ expression { ',' expression } ] ')'

raiseStatement ::= 'raise' [ expression ]

handleStatement ::= 'try' block
handler { handler }

handler ::= 'handle' [ ClassIdentifier identifier {',' ClassIdentifier identifier } ]
block

declaration ::= localDeclaration
| classDeclaration

localDeclaration ::= variableDeclaration
| constantDeclaration
| procedureDeclaration
| functionDeclaration

variableDeclaration ::= type Identifier [ ':=' expression ] ê
constantDeclaration ::= type ConstantIdentifier [ ':=' expression ] ê
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type ::= { name '.' } ClassIdentifier [ '<' type { ',' type } '>' ]

procedureDeclaration ::= Identifier '(' [ parameterList ] ')' block

parameterList ::= ( parameter { ',' parameter } { ',' defaultParameter } )
| ( defaultParameter { ',' defaultParameter } )

parameter ::= type Identifier
defaultParameter ::= type Identifier ':=' expression

functionDeclaration ::= type Identifier '(' [ parameterList ] ')' block

classDeclaration ::= ['abstract'] 'class' ClassIdentifier
[ '<' ClassIdentifier { ',' ClassIdentifier } '>' ]
[ 'inherits' typeList]
classBody

typeList ::= { name '.' } ClassIdentifier
{ ' , ' { name '.' } ClassIdentifier }

classBody ::= ':' ê
ñ

(memberDeclaration { memberDeclaration } | 'pass')
ó

memberDeclaration ::= [accessModifier] ( variableDeclaration
| constantDeclaration
| methodDeclaration )

accessModifier ::= '+' | '~' | '#' | '´'

methodDeclaration ::= functionDeclaration
| procedureDeclaration
| abstractMethodDeclaration

abstractMethodDeclaration ::= 'abstract' [ type ] Identifier
' ( ' [parameterList] ')' ê

moduleDeclaration ::= { importStatement }
{ [accessModifier] declaration | statement }

importStatement ::= 'import' Identifier { '.' Identifier }
[ ' . ' (ClassIdentifier | ConstantIdentifier) ]
[ 'as' (Identifier | ClassIdentifier | ConstantIdentifier) ]
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B Predefined Classes

Object
+ ID : Identity
+ TYPE : Class<T>

+ toString() : String

Exception
+ getMessage() : String
+ getTrace() : Map<Int, String>
+ getLine() : Int
+ getFile() : String

Equal
+ _eq_(value : ReceiverType) : Bool
+ _neq_(value : ReceiverType) : Bool

Ordered
+ _lt_(value : ReceiverType) : :Bool
+ _gt_(value : ReceiverType) : Bool
+ _leq_(value : ReceiverType) : Bool
+ _geq_(value : ReceiverType) : Bool

Arithmetic
+ _add_(value : ReceiverType) : ReceiverType
+ _sub_(value : ReceiverType) : ReceiverType
+ _mul_(value : ReceiverType) : ReceiverType
+ _div_(value : ReceiverType) : ReceiverType
+ _pow_(value : ReceiverType) : ReceiverType

Int
+ _mod_(value : Int) : Int
+ _add_(value : Float) : Float
+ _sub_(value : Float) : Float
+ _mul_(value : Float) : Float
+ _div_(value : Float) : Float
+ _pow_(value : Float) : Float
+ _neg_() : Int

Float
+ ceil() : Int
+ floor() : Int
+ round() : Int
+ _add_(value : Int) : Int
+ _sub_(value : Int) : Int
+ _mul_(value : Int) : Int
+ _div_(value : Int) : Int
+ _pow_(value : Int) : Int
+ _neg_() : Float

Identity

Bool
+ _not_() : Bool

Char
+ getCode() : Int

Class<T>
+ getName() : String
+ isAbstract : Bool
+ getSuperClasses() : Array<Class<T>>

Procedure<P1, P2, ..., Pn>

Function<R: P1, P2, ..., Pn>

Map<K, V>
+ isEmpty() : Bool
+ getSize() : Int
+ at(index : K) : V
+ set(key : K, value: V)
+ remove(key :K)
+ getKeys() : Array<K>
+ getValues() : Array<V>
+ contains(k : K, v : V) : Bool

Sequence<T>
+ _at_(index : Int) : T
+ getFirst() : T
+ getLast() : T
+ getSize() : Int
+ isEmpty : Bool
+ contains(value : T) : Bool
+ _add_(value : T) : Sequence<T>

Array<T>
+ _set_(idx: Int, value : T)

String
+ join(s : Sequence<String>) : String
+ split(sep : String) : Sequence<String>
+ _mul_(times : Int) : String
+ _add_(s : String) : String
+ substring(offset : Int, length : Int) : String

MutableString

T = Char

T = Char

List<T>
+ set(idx: Int, value : T)
+ removeAt(idx : Int)
+ remove(value : T)
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